SQL ABG

10/31/2005

(1)SOLUTIONS
(2)Chapter 1

(5)S.1.1

Data independence means that database application programs are not dependent on the physical structure of the stored data in a database (physical data independence) and that database application programs are independent of the logical structure of the database (logical data independence).

(5)S.1.2

The main concept of the relational model is a relation, i.e., a table. The whole relational model consists of only tables with one or more columns and zero or more rows. At every position in the table there is only one data value.

(5)S.1.3

The table employee represents an entity, while the data for Ann Jones specifies an object, i.e., an instance of the entity.

(5)S.1.4

The works_on table represents the relationship between employees and projects. The difference between the works_on table and the other tables of the sample database is that the works_on table shows the relationship between two entities, while each of the other tables represents an entity.

(5)S.1.5

A) Yes, because it is unique.

B) Yes, because each title uniquely determines the corresponding isbn.

C) Yes (there are no dependencies between the non-key attributes, because there is just one attribute).

(5)S.1.6

A) Yes, because all other columns are dependent on this one.

B) No, because of the functional dependency on the column order_no.
(5)S.1.7

The company table is not in any normal form, because the column Location is multivalued.

(5)S.1.8

A) 1NF, because the column city is functionally dependent on the column supplier_no, which is the partial key of the table.

B) Using the following two tables:

 supplier1 (supplier_no, article)

 supplier2 (supplier_no, city)

(5)S.1.9

1NF, because the column C is dependent on the column B, which is the partial key of the table.

(5)S.1.10

This table is in 3NF, but its design is not well done. (The primary key should be the combination of the columns A and C.)

(2)Chapter 3
(5)S.3.1

To create the test database, expand the server, right-click Databases and select New Database. In the New Database dialog box type test in the Name field, enter the value 2 in the field File growth – In megabytes and 20 in the field Maximum file size – Restrict filegrowth (MB). In the Location column change the path to C:\tmp. Do the same for the Initial size column to change it to10MB. Then click OK.

(5)S.3.2

Select the test database inside the Database folder of your instance. Right-click it, select Properties, and choose the Transaction Log tab. To change the values, proceed as in the solution of Exercise 3.1.

(5)S.3.3

In the Properties dialog box of the test database choose the Options tab and set the Restrict Access option to “SINGLE_USER”. In this case both users cannot use the database at the same time.
(5)S.3.4

Right-click the Tables folder of the test database. Select New Table and enter the name of the first table (department). Then enter the column names with the corresponding data types. Proceed in the same way with all four tables.

(5)S.3.5

Click the AdventureWorks database in the Databases folder and select Tables. All user tables of the database are now shown in the detail pane. Double-click the Person.Address table to display its properties.

(5)S.3.6

It is not possible to create another database with the same name.

(5)S.3.7

Choose the function File in the main menu and select Save Query as. Then change the destination directory, enter the new filename (createdb), and click OK.

(5)S.3.8

Either execute the USE test statement and execute it inside the Object Explorer’s window or select the database from the Database select box in the tool bar.

(5)S.3.9

Open the Query Editor, select the AdventureWorks database from the drop-down menu, and enter the following statement: SELECT * FROM Sales.Customer. After starting the execution of the statement (with F5 for instance), press the red stop button to interrupt the current execution.
(5)S.3.10

Choose Query in the main menu of SQL Server Management Studio, click Results To and select Results to Text.
 (2)Chapter 4
(5)S.4.1

The difference is in storage length and range of possible values.

TINYINT is stored in one byte with a value range from 0 to 255. SMALLINT is stored in two bytes with a value range from –32768 to 32767. INT is stored in four bytes with a value range from –2147483648 to 2147483647.

(5)S.4.2

CHAR is a string which can store up to 8,000 characters. It stores the amount of characters given by declaration. VARCHAR also can store up to 8,000 characters. However, the strings are stored with their actual length. Use CHAR when the data values in a column are expected to be approximately of the same size. Use VARCHAR when the data values in a column are expected to vary considerably in size.

(5)S.4.3

Using the following statement:
SET DATEFORMAT ymd

(5)S.4.4

SELECT DB_ID('test');
(5)S.4.5

SELECT @@VERSION, @@LANGUAGE

(5)S.4.6

(01000101)

(11011111)
(00000110)
(5)S.4.7

A + NULL : result is NULL, independent of A

NULL = NULL : result is NULL

B OR NULL : true, if B is true, otherwise NULL

B AND NULL : false, if B is false, otherwise NULL

(5)S.4.8

By setting QUOTED_IDENTIFIER to OFF

(5)S.4.9

Delimited identifiers specify a special kind of identifiers that allow the use of reserved keywords as identifiers or table names that include blanks.

(2)Chapter 5
(5)S.5.1

USE master;
GO
CREATE DATABASE test_db
 ON (NAME = test_db_dat,
 FILENAME='C:\tmp\test_db.mdf',
 SIZE = 5, MAXSIZE = UNLIMITED, FILEGROWTH = 8%)
 LOG ON
 (NAME=test_db_log,
 FILENAME = 'C:\tmp\test_db_log.ldf',
 SIZE = 2, MAXSIZE = 10, FILEGROWTH = 500KB);
(5)S.5.2

USE master;
ALTER DATABASE test_db
 ADD LOG FILE (NAME=emp_log1,
 FILENAME='C:\tmp\test_db.ldf',
 SIZE=2, MAXSIZE=UNLIMITED, FILEGROWTH=2)

(5)S.5.3

USE master;
ALTER DATABASE test_db
 MODIFY FILE
 (NAME = test_db_dat, SIZE = 10MB)

(5)S.5.4

The NOT NULL specification is necessary for all columns that are part of the primary key.

(5)S.5.5

dept_no and project_no are defined as CHAR-values, because they may contain alphanumerical values.

(5)S.5.6

USE test_db;
CREATE TABLE customers (customerid char(5) not null,
 companyName varchar(40) not null,
 contactName char(30) null,
 address varchar(60) null,
 city char(15) null,
 phone char(24) null,
 fax char(24) null);
CREATE TABLE orders (orderid integer not null,
 customerid char(5) not null,
 orderdate datetime null,
 shippeddate datetime null,
 freight money null,
 shipname varchar(40) null,
 shipaddress varchar(60) null,
 quantity integer null);
(5)S.5.7

ALTER TABLE orders
 ADD shipregion INTEGER NULL;
(5)S.5.8

ALTER TABLE orders
 ALTER COLUMN shipregion CHAR(8) NULL;
(5)S.5.9

ALTER TABLE orders
 DROP COLUMN shipregion;
(5)S.5.10

After deleting a table with the DROP TABLE statement, all data, indices and triggers belonging to the table are also dropped. In contrast to that, all views that are defined using the table are not removed.

(5)S.5.11

USE test_db;
DROP TABLE orders;
DROP TABLE customers;
CREATE TABLE customers (customerid char(5) not null
 CONSTRAINT prim_cust PRIMARY KEY,
companyName varchar(40) not null,
 contactName char(30) null,
 address varchar(60) null,
 city char(15) null,
 phone char(24) null,
 fax char(24) null);
CREATE TABLE orders (orderid INTEGER NOT NULL,
 customerid CHAR(5) NOT NULL,
 orderdate DATETIME NULL,
 shippeddate DATETIME NULL,
 freight MONEY NULL,
 shipname VARCHAR(40) NULL,
 shipaddress VARCHAR(60) NULL,
 quantity INTEGER NULL,
 CONSTRAINT prim_ord PRIMARY KEY(orderid),
 CONSTRAINT foreign_orders FOREIGN KEY(customerid) REFERENCES customers(customerid));
(5)S.5.12

It is not possible to insert the row, because of the referential constraint enforced in the CREATE TABLE statement (see S.4.11). The system prints the following message:

“The INSERT statement conflicted with the FOREIGN KEY constraint "foreign_orders". The conflict occurred in database "test_db", table "dbo.customers", column 'customerid'.”
(5)S.5.13

USE test_db;
ALTER TABLE orders
 ALTER COLUMN orderdate DATETIME NULL;
ALTER TABLE orders
 ADD CONSTRAINT AddDateDflt DEFAULT getdate() FOR orderdate;
(5)S.5.14

USE test_db;
ALTER TABLE orders
 ADD CONSTRAINT limit_qu
 CHECK (quantity BETWEEN 1 AND 30);
 (5)S.5.15
There are several ways to display integrity constraints of a table. The easiest way is to use the sp_helpconstraint system procedure:
 sp_helpconstraint orders
(5)S.5.16
USE test_db;
ALTER TABLE customers
 DROP CONSTRAINT prim_cust;
That statement will not work, because the primary key constraint prim_cust is referenced by the foreign key constraint defined in the orders table.

(5)S.5.17
USE test_db;
ALTER TABLE orders
 DROP CONSTRAINT limit_qu ;
(5)S.5.18
EXEC sp_rename 'customers.city', town;
(2)Chapter 6
(5)S.6.1

USE sample;
SELECT *
 FROM works_on;
(5)S.6.2

USE sample;
SELECT emp_no
 FROM works_on
 WHERE Job = 'Clerk';
(5)S.6.3

USE sample;
SELECT emp_no
 FROM works_on
 WHERE project_no = 'p2'
 AND emp_no < 10000;
or:

USE sample;
SELECT emp_no
 FROM works_on
 WHERE project_no = 'p2'
 AND emp_no BETWEEN 0 AND 9999;
(5)S.6.4

USE sample;
SELECT emp_no
 FROM works_on
 WHERE enter_date NOT BETWEEN
 '01.01.2007' AND '12.31.2007';
(5)S.6.5

USE sample;
SELECT emp_no
 FROM works_on
 WHERE project_no = 'p1'
 AND (job = 'Manager' OR job = 'Analyst');
(5)S.6.6

USE sample;
SELECT enter_date
 FROM works_on
 WHERE project_no = 'p2'
 AND Job IS NULL;
(5)S.6.7

USE sample;
SELECT emp_no, emp_lname
 FROM employee
 WHERE emp_fname LIKE '%t%t%';
(5)S.6.8

USE sample;
SELECT emp_no, emp_fname
 FROM employee
 WHERE emp_lname LIKE '_[ao]%es';
(5)S.6.9

USE sample;
SELECT emp_no
 FROM employee
 WHERE dept_no =
 (SELECT dept_no FROM department
 WHERE location = 'Seattle');
(5)S.6.10

USE sample;
SELECT emp_lname, emp_fname
 FROM employee
 WHERE emp_no IN
 (SELECT emp_no
 FROM works_on
 WHERE enter_date = '04/01/2007');
(5)S.6.11

USE sample;
SELECT location
 FROM department
 GROUP BY location;
(5)S.6.12

If you use the GROUP BY clause without any additional specifications (aggregates, HAVING clause), it is exactly like DISTINCT. (It divides a table into groups and returns one row for each group.)

(5)S.6.13

All NULL values belong to one group. (This is not exactly in accordance with the fact that each NULL value is a value per se, and it cannot be compared with other NULL values.)

(5)S.6.14

COUNT(expression) takes an argument (i.e., a column or expression) and displays all non NULL occurrences of that argument. COUNT(*) counts all rows, whether or not any particular column contains a NULL value.

(5)S.6.15

USE sample;
SELECT MAX(emp_no)
 FROM employee;
(5)S.6.16

USE sample;
SELECT job
 FROM works_on
 GROUP BY job
 HAVING COUNT(*) > 2;
(5)S.6.17

USE sample;
SELECT DISTINCT emp_no
 FROM works_on
 WHERE (Job = 'Clerk' OR emp_no IN
 (SELECT emp_no
 FROM employee
 WHERE dept_no='d3'));
(5)S.6.18

The inner SELECT statement can be used in conjunction with a comparison operator, such as =, if its result set has a maximum of one row (in this case = may be used). The result of the SELECT statement in E.6.18 has more than one row. Therefore, the comparison operator = has to be replaced with the set operator called IN.

The correct syntax form is:

USE sample;
SELECT project_name
 FROM project
 WHERE project_no IN
 (SELECT project_no FROM works_on WHERE Job = 'Clerk');
(5)S.6.19

Temporary tables can be used to store the intermediate result of a complex query.

(5)S.6.20

Local temporary tables are removed at the end of the current session, while the global temporary tables are removed at the end of the session that created the table.

 (5)S.6.21

USE sample;
SELECT project.*, emp_no, Job, enter_date
 FROM project JOIN works_on
 ON project.project_no = works_on.project_no;
SELECT *
 FROM project CROSS JOIN works_on;
(5)S.6.22

You need at least N-1 join conditions.

(5)S.6.23

USE sample;
SELECT emp_no, job
 FROM works_on JOIN project
 ON works_on.project_no = project.project_no
 WHERE project_name = 'Gemini';
(5)S.6.24

USE sample;
SELECT emp_fname, emp_lname
 FROM employee JOIN department
 ON employee.dept_no = department.dept_no
 WHERE (dept_name = 'Research' OR dept_name = 'Accounting');
(5)S.6.25

USE sample;
SELECT enter_date
 FROM works_on JOIN employee
 ON works_on.emp_no = employee.emp_no
 WHERE job = 'Clerk'
 AND dept_no = 'd1';
(5)S.6.26

USE sample;
SELECT project_name
 FROM project
 WHERE project_no IN
 (SELECT project_no
 FROM works_on
 WHERE Job = 'Clerk'
 GROUP BY project_no
 HAVING COUNT(*) > 1);
(5)S.6.27

USE sample;
SELECT emp_fname, emp_lname
 FROM employee
 JOIN works_on ON employee.emp_no = works_on.emp_no
 JOIN project ON works_on.project_no = project.project_no
 WHERE project_name = 'Mercury'
 AND job = 'Manager';
(5)S.6.28

USE sample;
SELECT emp_fname, emp_lname
 FROM employee
 WHERE emp_no IN
 (SELECT a.emp_no
 FROM works_on a, works_on b
 WHERE b.enter_date=a.enter_date
 AND a.emp_no != b.emp_no);
(5)S.6.29

USE sample;
SELECT a.emp_no
 FROM employee_enh a, employee_enh b
 WHERE a.domicile = b.domicili
 AND a.dept_no = b.dept_no
 AND a.emp_no != b.emp_no;
(5)S.6.30

USE sample;
SELECT emp_no
 FROM employee
 WHERE dept_no =
 (SELECT dept_no
 FROM department
 WHERE dept_name = 'Marketing');
SELECT emp_no
 FROM employee
 JOIN department
 ON employee.dept_no = department.dept_no
 WHERE dept_name = 'Marketing';
(2)Chapter 7

(5)S.7.1

USE sample;
INSERT INTO employee values(11111,'Julia','Long',NULL);
(5)S.7.2

USE sample;
CREATE TABLE emp_d1_d2 (emp_no INTEGER NOT NULL,
 emp_fname CHAR(20) NOT NULL,
 emp_lname CHAR(20) NOT NULL,
 dept_no CHAR(4) NULL);
INSERT INTO emp_d1_d2
SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE dept_no IN ('d1', 'd2');
or:

USE sample;
SELECT emp_no, emp_fname, emp_lname, dept_no
 INTO emp_d1_d2
 FROM employee
 WHERE dept_no IN ('d1', 'd2');
(5)S.7.3

USE sample;
CREATE TABLE employee_three (emp_no INTEGER NOT NULL,
 emp_fname CHAR(20) NOT NULL,
 emp_lname CHAR(20) NOT NULL,
 dept_no CHAR(4) NULL);
INSERT INTO employee_three(emp_no, emp_fname, emp_lname, dept_no)
 SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no IN
 (SELECT emp_no FROM works_on
 WHERE enter_date BETWEEN '01.01.2007' AND '12.31.2007');
(5)S.7.4

USE sample;
UPDATE works_on
 SET job = 'Clerk'
 WHERE job = 'Manager' AND project_no = 'p1';
(5)S.7.5

USE sample;
UPDATE project
 SET budget = NULL;
(5)S.7.6

USE sample;
UPDATE works_on
 SET job = 'Manager'
 WHERE emp_no = 28559;
(5)S.7.7

USE sample;
UPDATE project
 SET budget = budget/10+budget
 WHERE project_no IN(
 SELECT project_no FROM works_on
 WHERE job='Manager' AND emp_no=10102);
(5)S.7.8

USE sample;
UPDATE department
SET dept_name='Sales'
WHERE dept_no =
(SELECT dept_no FROM employee
 WHERE emp_lname='James');
(5)S.7.9

USE sample;
UPDATE works_on
 SET enter_date='12/12/2007'
 WHERE project_no='p1' AND emp_no IN (
 SELECT emp_no FROM employee
 JOIN department ON employee.dept_no = department.dept_no
 WHERE dept_name='Sales');
(5)S.7.10

USE sample;
DELETE FROM department
 WHERE location = 'Seattle';
(5)S.7.11

USE sample;
DELETE FROM works_on
 WHERE project_no = 'p3';
DELETE FROM project
 WHERE project_no = 'p3';

 (5)S.7.12

USE sample;
DELETE FROM works_on
WHERE emp_no IN (SELECT emp_no FROM employee
 WHERE dept_no IN (SELECT dept_no
 FROM department WHERE location ='Dallas'));

 (2)Chapter 8

(5)S.8.1

-- This procedure inserts 3,000 rows in the employee table
USE sample
declare @i integer
declare @first_name char(20)
declare @last_name char(20)
declare @department char(4)
set @i = 1
set @first_name = ‘Jane’
set @last_name = ‘Smith’
set @department = ‘d1’
while @i < 3001
begin
insert into employee
 values (@i, @first_name, @last_name, @department)
set @i = @i+1
end
(5)S.8.2

DECLARE @i INT
DECLARE @emp_no INT
SET @i = 0
SET @emp_no = (CONVERT(INT, (RAND() * 10000)))
WHILE @i < 1000
BEGIN
 WHILE (SELECT COUNT(*) FROM employee WHERE emp_no = @emp_no) > 0
 BEGIN
 SET @emp_no = (CONVERT(INT, (RAND() * 100000)))
 END
 INSERT INTO employee VALUES(@emp_no, 'Jane', 'Smith', 'd1')
 SET @i = @i + 1
END

 (2)Chapter 9

(5)S.9.1

USE master;
SELECT filename from sys.sysdatabases
 WHERE name = 'sample';
(5)S.9.2

USE sample;
SELECT OBJECTPROPERTY (object_id('employee'), 'TableHasClustIndex');
 (5)S.9.3

USE sample;
SELECT COUNT(*)
 FROM sys.sysconstraints, sys.sysobjects
 WHERE sys.sysconstraints.id = sys.sysobjects.id
 AND sys.sysobjects.name = 'employee';
(5)S.9.4

USE sample;
SELECT sysconstraints.status
 FROM syscolumns, sysobjects, sysconstraints
 WHERE syscolumns.id = sysconstraints.colid
 AND sysobjects.id = sysconstraints.id
 AND sysobjects.name = 'employee'
 AND syscolumns.name = 'dept_no';
(5)S.9.5
USE AdventureWorks;
SELECT table_name from information_schema.tables
WHERE table_type = 'BASE TABLE';
(5)S.9.6
USE sample;
SELECT column_name, data_type, ordinal_position
 FROM information_schema.columns
 WHERE table_name = 'employee';
 (2)Chapter 10
(5)S.10.1

USE sample;
CREATE INDEX i_enterdate
 ON works_on(enter_date)
 WITH FILLFACTOR = 60;
(5)S.10.2

USE sample;
CREATE UNIQUE INDEX i_lfname
 ON employee (emp_lname, emp_fname);
A composite index can be used for index access for the leading part of the index. Therefore, there is a significant difference if you change the order of the columns in a composite index.

(5)S.10.3

An index that is implicitly created for the primary key of a table cannot be dropped using the DROP INDEX statement. It can be dropped only if you drop the constraint (using the ALTER TABLE statement with the DROP CONSTRAINT clause).

(5)S.10.4

During index access, only the rows that satisfy the search criteria of the query are accessed. This is in most cases an obvious advantage in relation to a table scan, where the system does not use an index. But besides this significant benefit, index scan can have two disadvantages: In contrast to a table scan, Database Engine uses smaller I/O units to read rows for index access; therefore, a number of read operations will be comparatively higher. The second disadvantage of the index access method (using a nonclustered index) is that data pages must be read repeatedly, because the rows to be selected are scattered on data pages.

(5)S.10.5

USE sample;
CREATE INDEX i_employee_lname ON employee (emp_lname);
(5)S.10.6

USE sample;
CREATE INDEX i_emp_name ON employee (emp_lname, emp_fname);
(5)S.10.7

USE sample;
CREATE INDEX i_workson_empno ON works_on (emp_no);
CREATE INDEX i_employee_empno ON employee (emp_no);
(5)S.10.8

USE sample;
CREATE INDEX i_department_deptno ON department (dept_no);
CREATE INDEX i_employee_deptno ON employee (dept_no);
CREATE INDEX i_department_deptname ON department (dept_name);
(2)Chapter 11
(5)S.11.1

USE sample;
GO
CREATE VIEW v_10_1
 AS SELECT *
 FROM employee WHERE dept_no = 'd1';
(5)S.11.2

USE sample;
GO
CREATE VIEW v_10_2
 AS SELECT project_no, project_name
 FROM project;
(5)S.11.3

USE sample;
GO
CREATE VIEW v_10_3
 AS SELECT emp_lname, emp_fname
 FROM employee, works_on
 WHERE works_on.emp_no = employee.emp_no
 AND enter_date BETWEEN '06/01/2007' AND '12/31/2007';
(5)S.11.4

USE sample;
GO
CREATE VIEW v_10_4 (first, last)
 AS SELECT emp_fname, emp_lname
 FROM v_10_3;
(5)S.11.5

USE sample;
SELECT *
 FROM v_10_1 WHERE emp_lname LIKE 'M%;'
(5)S.11.6

USE sample;
GO
CREATE VIEW v_10_6
 AS SELECT project.*
 FROM project, employee, works_on
 WHERE project.project_no = works_on.project_no
 AND employee.emp_no = works_on.emp_no
 AND emp_lname = 'Smith';
(5)S.11.7

USE sample;
GO
ALTER VIEW v_10_1
 AS SELECT *
 FROM employee WHERE dept_no IN('d1', 'd2');
(5)S.11.8

USE sample;
GO
DROP VIEW v_10_3;
The DROP VIEW statement also removes the view v_10_4.

(5)S.11.9

USE sample;
INSERT INTO v_10_2 VALUES('p2, 'Moon');
(5)S.11.10
USE sample;
GO
CREATE VIEW v_10_10
 AS SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no < 10000
 WITH CHECK OPTION
INSERT INTO v_10_10 VALUES(22123, 'Michael', 'Kohn', 'd3')
 doesn’t work, because the employee number is greater than 10,000

(5)S.11.11

USE sample;
GO
CREATE VIEW v_10_11
 AS SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no < 10000;
INSERT INTO v_10_11 VALUES(22123, , 'Michael', 'Kohn', 'd3');
-- works, because the employee number won’t be checked
(5)S.11.12

USE sample;
GO
CREATE VIEW v_10_12
 AS SELECT emp_no, project_no, enter_date, job
 FROM works_on
 where enter_date between '01.01.2007' and '12.31.2008';
 with check option
UPDATE v_10_12 SET enter_date = '06/01/2006'
 where emp_no = 29346 and project_no=‘p1’;
-- doesn’t work, because the date does not belong to the years 2007 or 2008.

(5)S.11.13

USE sample;
GO
CREATE VIEW v_10_13
 AS SELECT emp_no, project_no, enter_date, job
 FROM works_on
 where enter_date between '01.01.2007' and '12.31.2008';
UPDATE v_10_12 SET enter_date = '06/01/2006'
 where emp_no = 29346 and project_no='p1';
-- this UPDATE statement works;
 (2)Chapter 12

(5)S.12.1

In Windows mode Database Engine exclusively uses Windows user accounts, assuming that they already have been validated at the operating system level (trusted connection). In Mixed mode, there are two security options: SQL Server security and Windows security.

(5)S.12.2

The login is used to allow a certain user to log in to the database system, whereas the account is used to grant access to a particular database for a certain user or a role.

(5)S.12.3

USE sample;
CREATE LOGIN ann WITH PASSWORD = 'a1b2c3d4e5';
CREATE LOGIN burt WITH PASSWORD = 'd4e3f2g1h0';
CREATE LOGIN chuck WITH PASSWORD = 'f102gh285';
USE master;
SELECT name FROM sys.syslogins;
(5)S.12.4

USE sample;
CREATE USER s_ann FOR LOGIN ann;
CREATE USER s_burt FOR LOGIN burt;
CREATE USER s_chuck FOR LOGIN chuck;
 (5)S.12.5

USE sample;
GO
CREATE ROLE managers AUTHORIZATION s_ann;
GO
sp_addrolemember 'managers', 's_ann';
sp_addrolemember 'managers', 's_burt';
sp_addrolemember 'managers', 's_chuck';

-- display the information using the sp_helpuser system procedure
EXEC sp_helpuser 'managers'
(5)S.12.6

USE sample;
GRANT CREATE TABLE TO s_burt;
GRANT CREATE PROCEDURE TO s_ann;
(5)S.12.7

USE sample;
GRANT UPDATE ON employee(emp_lname,emp_fname)
 TO s_chuck;
(5)S.12.8

USE sample;
GO
CREATE VIEW readnames
 AS SELECT emp_lname,emp_fname FROM employee;
GO
GRANT SELECT ON readnames
 TO s_burt, s_ann;
(5)S.12.9

USE sample;
GRANT INSERT ON project
 TO managers;
(5)S.12.10

USE sample;
REVOKE SELECT ON readnames
 FROM s_burt;
(5)S.12.11

USE sample;
DENY INSERT ON project
 TO s_ann;
(5)S.12.12

The functionality of views in relation to the Transact-SQL statements GRANT, REVOKE, and DENY is limited, because with the former you can restrict only the access to one or more columns and one or more rows. (Using Transact-SQL statements you can restrict operations on data, such as reading and writing.)

(5)S.12.13

USE sample;
GO
EXEC sp_helpuser s_ann;
(2)Chapter 13

(5)S.13.1

Transactions are used to keep the data consistent using its “all or nothing” property: Either all statements are (successfully) executed or no one of them is executed.

(5)S.13.2

A distributed transaction needs a coordinator that coordinates the execution of all transaction parts on different servers. Also, you use the BEGIN TRANSACTION statement to start a local transaction and BEGIN DISTRIBUTED TRANSACTION to start a distributed transaction.

(5)S.13.3

Each Transact-SQL statement always belongs either implicitly or explicitly to a transaction. When a session operates in implicit transaction mode, selected statements implicitly issue the BEGIN TRANSACTION statement. This means that you do nothing to start such a transaction. However, the end of each implicit transaction must be explicitly committed or rolled back using the COMMIT (i.e., ROLLBACK) statement. An explicit transaction is specified with the pair of statements BEGIN TRANSACTION and COMMIT TRANSACTION (or ROLLBACK TRANSACTION).

(5)S.13.4

None.

(5)S.13.5

Using the global variable @@error.
(5)S.13.6

The SAVE TRANSACTION statement is used to execute parts of an entire transaction.

(5)S.13.7

The advantage of the row-level locking is that it maximizes concurrency because all other rows of the table that are stored on the same page can be used by other processes. On the other hand, it increases system overhead because each locked row requires one lock (and you need many more locks if you use row-level locking instead of page-level locking). The advantage of row-level locking is the disadvantage of page-level locking and vice versa.

(5)S.13.8

Using the SET LOCK_TIMEOUT statement, a user can specify whether a transaction should wait or not for a lock to be released. Also, there are several options in the FROM clause of the SELECT statement that can be used by a user to influence locking behavior of Database Engine (such as UPDALOCK, TABLOCK; ROWLOCK, and PAGLOCK).

(5)S.13.9

An intent lock is always placed at a next level in a hierarchy of database objects above the process intents to lock. An X lock, i.e., S lock, is always used for the object that actually should be locked.

(5)S.13.10

Lock escalation is the process of converting many page-level locks into one table lock (or many row-level locks into one page lock).

(5)S.13.11

READ UNCOMMITTED is the simplest isolation level and therefore allows the maximum of data inconsistency of all isolation levels. On the other hand, the advantage of this isolation level is that it allows the highest concurrency. The advantage of SERIALIZABLE is that there will be no data inconsistency at all when you apply this isolation level for a process. On the other hand, it decreases concurrency of the processes at most.

(5)S.13.12

A deadlock is a special situation in which two transactions block the progress of each other. (It is possible that several transactions cause a deadlock, if the first transaction blocks the second, the second the third, and so on, and if the last transaction blocks the first one.)

(5)S.13.13

Database Engine always chooses the process that closed the loop in a deadlock. Users can use the SET DEADLOCK_PRIORITY statement to choose the “victim” process.

 (2)Chapter 14
(5)S.14.1

USE sample;
GO
CREATE TRIGGER tr_refint_dept
 ON department
 FOR DELETE, UPDATE
 AS
 IF UPDATE(dept_no)
 BEGIN
 IF (SELECT COUNT(*)
 FROM employee, deleted
 WHERE employee.dept_no = deleted.dept_no) >0
 BEGIN
 ROLLBACK TRANSACTION
 PRINT 'Transaction failed!'
 END
 ELSE PRINT 'Transaction succeeded'
 END;
GO
CREATE TRIGGER tr_refint_dept2
 ON employee
 FOR INSERT, UPDATE
 AS
 IF UPDATE(dept_no)
 BEGIN
 IF (SELECT department.dept_no
 FROM department, inserted
 WHERE department.dept_no = inserted.dept_no) IS NULL
 BEGIN
 ROLLBACK TRANSACTION
 PRINT 'Transaction failed!'
 END
 ELSE PRINT 'Transaction succeeded'
 END

(5)S.14.2

USE sample;
GO
CREATE TRIGGER tr_refint_project
ON project
FOR DELETE, UPDATE
 AS
 IF UPDATE(project_no)
 BEGIN
 IF (SELECT COUNT(*)
 FROM works_on, deleted
 WHERE works_on.project_no = deleted.project_no) >0
 BEGIN
ROLLBACK TRANSACTION
PRINT “Transaction failed!”
END
ELSE PRINT “Transaction succeeded”
END
CREATE TRIGGER tr_ref_project2
ON works_on
FOR INSERT, UPDATE
 AS
 IF UPDATE(project_no)
 BEGIN
 IF (SELECT project.project_no
 FROM project, inserted
 WHERE project.project_no = inserted.project_no) IS NULL
BEGIN
ROLLBACK TRANSACTION
PRINT 'Transaction failed!'
END
ELSE PRINT 'Transaction succeeded'
END

 (5)S.14.3
 First step: Implement the program

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;
public class StoredProcedures
 {
 public static void Refint_WorksOn2()
 {
 SqlTriggerContext context = SqlContext.TriggerContext;
 if(context.IsUpdatedColumn(2)) //Emp_No
 {
 SqlConnection conn = new SqlConnection(“context connection=true”);
 conn.Open();
 SqlCommand cmd = conn.CreateCommand();
 cmd.CommandText = @”SELECT COUNT(*)
 FROM WORKS_ON, deleted
 WHERE works_on.emp_no = deleted.emp_no”;
 SqlPipe pipe = SqlContext.Pipe;
 if(Convert.ToInt32(cmd.ExecuteScalar()) > 0)
 {
 System.Transactions.Transaction.Current.Rollback();
 pipe.Send(“No deletion/modification of the row”);
 }
 else
 pipe.Send(“The row deleted/modified”);
 }
 }
}

 Second step: Compile the program

csc /target:library Example14_4.cs

 Third step: Create the corresponding assembly and create the trigger

CREATE ASSEMBLY Example14_4 FROM 'C:\Program\Microsoft SQL Server\assemblies\Example14_4.dll'
 WITH PERMISSION_SET=EXTERNAL_ACCESS
GO
CREATE TRIGGER refint_workson2 ON employee
 AFTER DELETE, UPDATE AS
 EXTERNAL NAME Example14_4.StoredProcedures.Refint_WorksOn2
 (2)Chapter 15

 (5)S.15.1
In the TEMP directory.

 (5)S.15.2
ALTER DATABASE model
 MODIFY FILE (NAME= modeldev,
 MAXSIZE = 4MB);
(2)Chapter 16

(5)S.16.1

Declarative Management Framework manages entities called managed targets, which may be server instances, databases, tables, or indices. A target set is the set of managed targets that results from applying filters to the target hierarchy. A facet is a set of logical properties that models the behavior or characteristics for certain types of managed targets. A condition is a Boolean expression that specifies a set of allowed states of a managed target with regard to a facet.
(5)S.16.2

Conditions can be specified for server instances, databases, tables and indices.

(5)S.16.3

CLR cannot be disabled because Declarative Management Framework for itself needs CLR.
(5)S.16.4

 The History Cleaning task and the Shrink Database task are examples of database maintenance plans which cannot be generated using the wizard.
(2)Chapter 17

(5)S.17.1

The benefit of differential backups is that you save time in the restore process because to recover a database completely, you need a full database backup and only the latest differential backup. If you use transaction logs for the same scenario, you have to apply the full database backup and all existing transaction logs to bring the database to a consistent state.

A disadvantage of differential backups is that you cannot use them to recover data to a specific point in time because they do not store intermediate changes to the database.

(5)S.17.2

It depends upon several factors, such as the size of the database, the number of modification operations, and so on.

(5)S.17.3

There is no way to make the differential backup of the master database. (You can make only the full database backup of this system database.)

(5)S.17.4

One common technique is to configure database data files on a RAID 0 drive and place the transaction log and backups on a mirrored drive (RAID 1). If the data must be quickly recoverable, use RAID 5 for a database and RAID 1 for the corresponding transaction log(s).

(5)S.17.5

Automatic recovery is done by the system, while manual recovery must be initiated by the system administrator.

(5)S.17.6

,The RESTORE VERIFYONLY statement.

(5)S.17.7

Using the full recovery model, no work is lost due to a lost or damaged data file, and you can recover to any point in time. On the other hand, the corresponding transaction log may be very voluminous. Using bulk-logged recovery model, you cannot recover to any point in time, but the corresponding transaction log is smaller, because minimal log space is used by bulk operations. The simple recovery model provides the simplest backup strategy, but all changes since the most recent database or differential backup must be manually redone.

(5)S.17.8

The advantage of failover clustering is that it protects your system against hardware failures because it provides a mechanism to automatically restart the database system on another node of the cluster. (It is the only high-availability technology with Database Engine that supports such server redundancy.) On the other hand, database mirroring provides data redundancy i.e. database as well as data file redundancy. Log shipping has the similar, but reduced functionality as database mirroring.
(2)Chapter 18

(5)S.18.1

You can automate, among others, the following tasks: data transfer, backing up the database and transaction log, as well as maintaining indices and data integrity.

(5)S.18.2

Create one job to back up your transaction log and specify two schedules.

(5)S.18.3

Create an alert on the Lock Wait Time counter of the Locks object.

(5)S.18.4

A SQL Server error message contains the following parts: A unique error message number, a severity level number, a line number, which identifies the line where the error occurred, and the error text.
(5)S.18.5

The three most important columns of the sys.messages catalog view are message_id, severity, and text.

(2)Chapter 19

(5)S.19.1

Primary key is required to uniquely identify the rows of the published table. All tables using transactional replication must explicitly contain a primary key.

(5)S.19.2

Partition tables and/or filter data, which you want to replicate.

(5)S.19.3

You can minimize update conflicts by limiting Subscriber update capabilities to an appropriate subset of data.

(5)S.19.4

Log Reader Agent searches for marked transactions and copies them from the transaction log on the publisher to the distribution database. It is used for transactional replications. The synchronization job between all sites is done by Merge Agent. It is used for merge replications. Finally, Snapshot Agent generates the schema and data of the published tables during snapshot replication.

(2)Chapter 19

(5)S.19.1

Expand the server, expand the Security folder, right-click Logins, and select New Login. On the General tab of the Login dialog box, select SQL Server Authentication, type the new login name (for example peter1), and type the corresponding password. In the Defaults database dialog box, select sample. The new login appears in the detail pane.

(5)S.19.2

In the Databases folder expand the database. Expand Security, right-click Users, and select New User. In the Database User dialog box select the login name and type the new user name under it. In the Database role membership frame, select public.

(5)S.19.3

In the Databases folder expand the database. Expand Security, right-click Roles, and select New Database Role. In the Database Role dialog box type the new role name (managers). In the Members of the role frame, click Add to add user names. Select the user names that belong to the new role.

(5)S.19.4

Right-click the database and select Properties. On the Permissions page of the Database Properties dialog box in the row with the user name (s_peter), check the boxes for the Create table and Create procedure permissions.

(5)S.19.5

To manage permissions for a user, expand the server and expand Databases. Right-click the database and then click Properties. In the Database Properties dialog box choose the Permissions page. Select the user and check the corresponding box in the Grant column.

(5)S.19.6

In the Databases folder expand the database, expand Roles, and expand Database Roles. Double-click the role (managers) that you want to modify. Select the Securables page, mark the table (project), and check the box at the intersection of Grant and Insert.

(2)Chapter 21

(5)S.21.1

SQL Server Profiler and Database Engine Tuning Advisor are two complementary tools. The most important feature of SQL Server Profiler is to capture activities in relation to queries. These activities are used as input for Database Engine Tuning Advisor.

(5)S.21.2

Performance Data Collector is used to collect, analyze troubleshoot and store diagnostic information in relation to Database Engine. On the other hand, Resource Governor can be used to define resource limits and priorities for different workloads.
 (2)Chapter 22
(5)S.22.1

Operative (OLTP) systems have short transactions, many (possibly hundreds or thousands of) users, continuous read and write operations, and medium-size data. Analytic systems have a small number of users, large size of data stored in a database, and, after the load process, only read operations.

(5)S.22.2

The ER model is highly normalized, while the dimensional model is usually denormalized because it uses nonredundant data. Also the ER model produces very complex database design for large databases.

(5)S.22.3

Extracting specifies the process of loading source data from multiple, heterogeneous operational systems in a temporary staging area. Data transformation is the process of formatting and modifying data that is extracted from various sources to make the information more useful. Finally, during the load process, the cleaned data is loaded into the data warehouse.

(5)S.22.4

In a dimensional model there is usually one fact table and many dimension tables. A fact table contains a very large amount of the data stored in a data warehouse (about 70%). Also, columns of a fact table are numeric and additive.

(5)S.22.5

The MOLAP structure offers the best query performance for data analysis because aggregations and a copy of the base data are stored in a multidimensional structure allowing the high-speed query processor to retrieve data quickly. However, data in MOLAP is duplicated in the cube and consumes the most storage space.

The ROLAP structure allows you to use standard Transact-SQL statements to query against the relational tables. It also eliminates data duplication and does not require extra storage space. However, the query performance is not as fast as with the MOLAP and HOLAP structure.

The HOLAP structure retrieves data in the cube quickly and consumes less storage space than MOLAP.

(5)S.22.6

Aggregation of data is necessary because very large amount of the data is stored in a data warehouse. In such a case, doing aggregations on the fly would require a significant amount of time.
(2)Chapter 24
(5)S.24.1

USE sample;
SELECT dept_name, budget,
 AVG(emp_cnt) OVER(PARTITION BY dept_name) AS emp_cnt_avg
 FROM project_dept
 WHERE dept_name = 'Accounting';
SELECT dept_name,
 AVG(emp_cnt) AS emp_cnt_avg
 FROM project_dept
 WHERE dept_name = 'Accounting'
 GROUP BY dept_name;
(5)S.24.2
USE sample;
SELECT date_month, dept_name, budget
FROM (SELECT date_month, dept_name, MAX(budget)
 OVER (PARTITION BY date_month) max_budget_dept, budget
 FROM project_dept) part_deptname
 WHERE budget = max_budget_dept;
(5)S.24.3
USE sample;
SELECT dept_name, budget, SUM(emp_cnt) sum_of_empcnt
 FROM project_dept
 GROUP BY CUBE (dept_name, budget);

(5)S.24.4
USE sample;
SELECT dept_name, budget, SUM(emp_cnt) sum_of_empcnt

 FROM project_dept

 GROUP BY ROLLUP (dept_name, budget);
If you take a closer look, you will see that the result set of S.24.4 is smaller than the result set of S.24.3 (13 rows vs. 19 rows). The reason is that only one column is used to build summary rows.

(5)S.24.5
USE sample;
SELECT dept_name, emp_cnt
 FROM (SELECT dept_name, emp_cnt,
 RANK() OVER(ORDER BY emp_cnt desc) AS rank
 FROM project_dept) part_dept
 WHERE rank <=3;
(5)S.24.6
USE sample;
SELECT TOP(3) dept_name, emp_cnt
 FROM project_dept
 ORDER BY emp_cnt DESC;
(5)S.24.7
USE sample;

SELECT dept_name, emp_cnt, RANK() OVER (PARTITION BY year(date_month)
 ORDER BY emp_cnt desc) AS rnk,
 DENSE_RANK() OVER (PARTITION BY year(date_month) ORDER BY emp_cnt
 desc) AS dense_rnk,
 ROW_NUMBER() OVER (PARTITION BY year(date_month) ORDER BY
 emp_cnt desc) AS row_no, date_month
 FROM project_dept
 WHERE year(date_month) = 2003;
(2)Chapter 25

(5)S.25.1

The report should be created the same way as the first report in Chapter 25. The query for this report is as follows:

SELECT employee.emp_no, emp_lname
 FROM employee JOIN works_on
 ON employee.emp_no = works_on. emp_no
 AND job = 'Clerk';

(5)S.25.2
 The query for this report is as follows:
SELECT budget, project_name
 FROM project JOIN works_on ON project.project_no = works_on. project_no
 JOIN employee ON employee.emp_no = works_on.emp_no
 JOIN department ON department.dept_no = employee.dept_no
 WHERE dept_name = 'Research
 AND emp_no < 25000;'
1
45

 093Appf

